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Applying a Galerkin Method to the integral equation yields the The filter coefficients arglhl, b, WS} = {1/2,1,1/2} and
system of linear equations {hy, RY RS, RS, WYY =1{1/12,-1/2,5/6, —=1/2,1/12}. In order
= =+ . to obtain a complete basis with homogeneous boundary conditions
Juzde = Cu ) . , ; L
) o o . on a bounded interval, the functions extending over the limits need
with the moment matrixg,, and the coefficient vectors. andé.. g again be omitted.

Accuracy and efficiency of the analysis strongly depend on the choicp, [4], boundary wavelets with a jump discontinuity at the edges
of the basis functions. For physical reasons, they must ensure curtglt employed. Here, however, we need wavelets to model the
continuity in the longitudinal direction, but may allow a discontinuougomogeneous current at the ends of the strip. Moreover, the boundary
distribution along the transverse axis. For complicated geometriggyelets should have minimum support in the spa¥e,. In the
sub-domain functions are well suited. Wavelet bases have proversiaitem of piecewise linear functions, three fine scaling functions
be very effective [2]. suffice. Filter coefficients (4) are found by explicitly enforcing
orthogonality top(2™¢—1) € V,, and normalizing the new wavelet.
The coefficients for the left boundary wavelet afég”, r}”,

To introduce wavelets, let us briefly review the concept of thevzy — 1 _2/3 1/9}.

multiresolutional analysis (MRA), which is fundamental for the A 2-p pasis is needed to simulate the current distribution on the

IIl. W AVELET ANALYSIS

application_ of_wavelets [71-9. ] ) ) microstrip. In contrast to [3] where the transverse dependence of the
The projection’ f of a function f on a resolution levetr is  |ongitudinal current distribution was modeled by a cubic term, we use
determined by the coefficients through a truly 2-D wavelet system. This can be derived from one-dimensional
Pof () i @ ; @) wavelets in ther- andy-direction by means of the tensor product [7]
m [ (t) = 1o mt — ). -
( l=— " ) [@mg (T - ])11:1 ) Nya:;;’»
8]
Here, (2™t — [) are the scaling functions which span the coars&{[¢m (= = Dl,_; yo.v bm=mg, m=

spaceV,,, C L*—the space of square integrable functions. For a finer [6” ,(y — )] , T
. . . mY y =1, N %

approximationP,,+1 f on'V,.4, a detail spacd,, (the orthogonal 0 my . 9

complement ofV,, in V,,4,) is introduced. The basis functions of {[¥h(y — l)],:h N w}m:mg,iw

W, are the wavelety/2 ¢ (2"t —1). The wavelets have at least oneHere, ;¢ and M*¥ define the coarsest and finest resolution

vanishing moment. Wavelets and scaling functions can be construcigghls, respectivelyN's* (> ) denote the number of functions

from finer scaling functions via the refinement relations on resolution levelm. The superscripts are self-explanatory. The
’ " i P resolution depth can be set independently in both directions for
{o(t). v(0)}" = Z this b} o(2t = D). (4)  optimum decomposition of each current distribution. The wavelet

l=—c0

system for the transverse distribution is the Haar system, whereas an
Here, the filter coefficienta?, »¥ do not only uniquely define the approximation with a continuous system is needed in the longitudinal
wavelet bases, but also the decomposition of a function into thatitection (Chui-Wang).

[7]. The projectionPys f can thus be decomposed as In this paper, we calculated the reaction integrals on the finest
oo M—-1 o scaling function level and then decomposed the impedance matrix

Pyuf= Z cn (2™t — n) + Z Z drn (2"t —n) into different wavelet levels. This procedure is advantageous because
n=—co m=mg n=—50 as it exploits the translation symmetries of the rooftop functions,

(5) only N, x N, simple reaction integrals have to be computed. The
transformation into a wavelet-Galerkin matrix is performed following

with the starting resolutionng. Coefficients {d...} denote the
g scheme

amplitudes of the wavelets. Whereas the scaling functions cover i o
low-frequency content, the wavelets include the information in their gl =wg, W’ (10)
respeptlve freql_Jency band. where TV is set up from the filter coefficients in (4) and (9). The

Various families of wavelet bases have been developed and usecf. L .

. - : matrix multiplication can be accelerated because of the sparsity of

[7]-[9]. Among the simplest, the Haar-basis and the Chui-Wang: db lovi id algorithm [7
wavelets [9] were shown to suffice for the analysis of planar structures and by employing a pyramid algorithm [7].
[5]. Additionally, since both can be adapted to bounded intervals [4],

[5], they were used in this paper. IV. ResuLTs
In the Haar system, scaling functions and wavelets are given by The reaction integrals are calculated following the procedure
‘ 1, 0<t<1 outlined in [10]. The excitation of the fundamental mode is realized
o1(t) :{0' otherwise as in [11]. Finally, the propagation constant and the fundamental

mode reflection coefficienk are deembedded by means of a modal

1
() = 1’1 ? < tf< ?1 ) analysis with a matrix pencil method that was adapted from [12].
v =y b 3 <I< In a first example, the reflection coefficient of an open microstrip
0, otherwise.

line (TRL 1) with substrate thickness = 0.635 mm, strip width
Their filter coefficients aré = h{ =1 andh) = —h{ = 1.1t b = 0.6 mm, and dielectric constart = 9.9 was calculated. The

can easily be verified that the Haar system forms an orthogonal bakisigth of the line ig = 10 mm. The results were found to be in good

Restriction to a bounded interval is achieved by simply omitting th&greement with those given in [3], as illustrated in Fig. 1. The slight

functions outside the region of interest. The Chui-Wang system discrepancy between the methods at high frequencies is due to the

piecewise linear functions is generated by the hat function defineboice of the discretization of the current distribution. In particular,

on the intervall0, - - -, 2] as follows: in [3], a cubic term was chosen for the transverse dependence.
t, 0<t<1 The effect of thresholding on the impedance matrix sparsity
o2(t) = {2 —t, 1<t<2 (8) (percentage of zero elements) is shown in Fig. 2 for four different
0, otherwise. cases. Here, the threshold defines (relative to the magnitude of the
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Fig. 1. Reflection coefficient of the microstrip open TRL 1 versus frequencitig 3. Magnitude of the reflection coefficient versus sparsity for different
This paper: (—), after [3]: (- - -).

MRA levels.
100 TABLE |
SPARSITY AND THRESHOLD FORVARIOUS MRA LEVELS AND TWO
DIFFERENT LINES FOR 1% ERROR IN | R|. NOTATIONS ARE AS IN FIG. 2
80 TRL 1 TRL 2
3* MRA | Sp.(%) | Threshold | Sp.(%) | Threshold
= 0 00 15 [ 45-100%] 23 [15.10°
5 01 79 1.4-1071 67 2.4-107°
g 02 78 1.1-107* 76 2410 “
0 40 03 ) 81 5.3-10 ‘
10 67 8.8-107" 63 2.7-107
20 79 2.3-10 * 5 1.1-10 %
20 30 48 6.1-1075
11 85 3.4-107 71 1.9-107°
22 84 9.5-10~* 70 1.2-10 1
0 . . .
107 10° 10° 10" 10° 10°
Threshold different MRA depths are compared, but also another microstrip

Hne (TRL 2: h = 0.15mm, b = 1.5mm, ¢, = 12.8,1 = 10mm,
f = 20 GHz) with a width-to-height ratio of 10 has been included for
further comparison. Also, the number of functions has been varied:

largest matrix element) the value below which elements are setigtead of 63x 4, we employed 3 8 functions. This corresponds
zero. The number of basis functions was 63 in the longitudini @ longitudinal discretization of about 13 functions per effective
direction and four in the transverse direction. For a classical ba¥fgvelength—already a rather coarse approximation. Thus, there is not
(00), no elements vanish for a threshold below 10The two digits Much redundancy in the longitudinal direction, resulting in a poorer
denote the number of wavelet levels in the longitudinal and transvef&mpression of the matrix (see Table |, MRA 10, 20, 30). In the
direction, respectively. Observe the steep ascent of the sparsity aroligiSverse direction, the finer grid leads to more redundancy and thus
this value. After a wavelet transformation has been performed, tRows for a more efficient matrix compression (see Table I, MRA
magpnitude of the elements varies in a much wider range. More th&f 02, 03). Adding wavelet levels in longitudinal direction does not
40% of the matrix elements are below a threshold 610t has been Significantly alter the obtained sparsity (see Table I, MRA 11, 22).
observed here that thresholding is most effective when the wavelet

transformation is applied with two wavelet levels in both directions V. CONCLUSION

(22). But even in just one direction, (20) or (02), matrix compression A wavelet scheme using simple wavelets has been extended to two
can be done efficiently. dimensions. This basis is employed in a spectral-domain moment

To illustrate the effects of compression on the reflection coefficientethod to analyze a microstrip discontinuity. It has been shown
Fig. 3 shows the relative deviation of its magnitude frofi|, the that wavelets are an effective tool for compressing the impedance
value without thresholding. The maximum allowable error was Sfiatrix, particularly when starting with a fine discretization because,
to 1%. Again, a wavelet transformation in both directions (22) iﬁ)r instance, when an appropriate resolution is not knwiori,

superior to a compression in only one direction (02), (20), and thgavelets will adaptively find and reduce redundancy.
sparsity reaches 80%. For a single wavelet level, the figure remains

slightly lower. Without wavelet transformation, an error of 1% is
reached at a sparsity of approximately 45%. The phase deviation

(not shown here) remains below 2ip to a sparsity of more than [1] T. Uwano and T. itoh, *Spectral domain approach,Namerical Tech-
85% in the case of (22) niques for M|crowa_ve and Millimeter-Wave Passive Structufedoh,

e ) . . Ed. New York: Wiley, 1989, pp. 335-380.
The sparsities and thresholds for an error of 1% in the magnitudg@] k. sabetfakhri and L. P. B. Katehi, “Analysis of integrated millimeter-

of the reflection coefficient are listed in Table I. Here, not only  wave and submillimeter-wave waveguides using orthonormal wavelet

Fig. 2. Matrix sparsity versus threshold for different MRA levels denote
by ¢, 7, the wavelet levels in longitudinal and transverse direction.
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Abstract—A generalization of the previously proposed transmission- the two-dimensional (2-D) full-wave technique. In all the proposed

line matrix (TLM)-based finite-difference time-domain (FDTD) method EDTD . . b he field - d
is presented for modeling frequency-dependent and anisotropic media. computations, no conversions between the field quantities an

The generalized scheme incorporates electric- and magnetic-flux densities the TLM circuit parameters and stub-related operations are required.
in addition to variable mesh sizes. Since it is in an FD form, modeling In addition, a normalizing procedure is also introduced to account
techniques developed for the conventional FDTD can be easily adapted fgr yariable mesh sizes.

into the proposed TLM-based technique. In this paper, a modifiedz-
transform technique for frequency-dependent media is implemented, and
a two-dimensional (2-D) full-wave technique for guided-wave structures

is developed. In all the FDTD computations, no conversions between the II.- THE GENERALIZATION OF THE TLM-BASED FDTD FORMULATION

field quantities and TLM circuit parameters such as open- and short- In a general three-dimensional (3-D) case, Maxwell's curl equa-
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Index Terms—Anisotropic, FDTD, frequency dependent, TLM. rectangular coordinates. For instance, 1o and B,
I. INTRODUCTION 8621 = O;f/l - 0£y — ooy E. @)
Time-domain numerical methods have been shown to be powerful 0B, O0E. OJF,
for solving electromagnetic related problems. These time-domain ot 9r  0- — OmyHy @

methods have received growing attention because of their versatility ) ) _
where ¢. and o, are, respectively, the equivalent electric and
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