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the use of the TFQMR method, the algorithm avoids the computation
of the multiplication between the transpose of the system matrix
and a vector, which is required in both the CG–FFT and BCG–FFT
methods. As a result, the programming complexity is greatly reduced.
Furthermore, since on average the TFQMR method requires only
one matrix-by-vector multiplication, which can be evaluated using
six FFT’s, the TFQMR–FFT algorithm is more efficient than the
currently available CG–FFT and BCG–FFT methods.
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Two-Dimensional Wavelet-Analysis of a Microstrip Open

Gerald Oberschmidt, Karsten Bubke, and Arne F. Jacob

Abstract—Simple two-dimensional (2-D) wavelet systems are used in
a moment method to analyze a microstrip discontinuity. This allows one
to efficiently compress the impedance matrix. The achievable sparsity is
discussed for different resolution depths where up to 85% was obtained
for an error below 1%.

Index Terms—Matrix compression, numerical analysis, planar mi-
crowave circuits, wavelets.

I. INTRODUCTION

The spectral-domain moment method is known to be a very
effective tool for the analysis of planar microwave circuits [1].
It leads, however, to densely populated impedance matrices. For
large or complex circuit configurations, this can become a serious
problem because of limited computer resources. This drawback can
be overcome by discretizing with wavelet bases because they allow
compression of the impedance matrices [2]–[5].

Wavelet bases have recently been used to effectively analyze two-
dimensional (2-D) structures [3]. Here, the wavelet scheme has been
extended to two dimensions, similar to [6].

After briefly reviewing the method and the concept of wavelets, we
present the construction of tensor wavelets in two dimensions with
arbitrary resolution levels in both directions. Details about the imple-
mentation of the program are followed by a discussion of the results.

II. M ETHOD

To analyze an open microstrip line, the electric-field integral
equation (EFIE) is solved in the spectral domain [1]. Since for
electrically narrow strips the transverse current can be neglected [3],
the EFIE reduces to

~Ex(�; �; h) = ~Gxx(�; �) ~Jx(�; �; h) (1)

for the longitudinal components of the electric field and current
density. Here,� and � are thex- and y-space frequencies, re-
spectively, andh is the height of the substrate. The tilde denotes
the Fourier transform. Definitions and notations, especially for the
Green’s function~Gxx, are as in [1].
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Applying a Galerkin Method to the integral equation yields the
system of linear equations

gxx
~jx = ~ex (2)

with the moment matrixgxx and the coefficient vectors~jx and~ex.
Accuracy and efficiency of the analysis strongly depend on the choice
of the basis functions. For physical reasons, they must ensure current
continuity in the longitudinal direction, but may allow a discontinuous
distribution along the transverse axis. For complicated geometries,
sub-domain functions are well suited. Wavelet bases have proven to
be very effective [2].

III. W AVELET ANALYSIS

To introduce wavelets, let us briefly review the concept of the
multiresolutional analysis (MRA), which is fundamental for the
application of wavelets [7]–[9].

The projectionPmf of a functionf on a resolution levelm is
determined by the coefficientscl through

Pmf(t) =

1

l=�1

cl�(2
m
t� l): (3)

Here, �(2mt � l) are the scaling functions which span the coarse
spaceVm � L2—the space of square integrable functions. For a finer
approximationPm+1f onVm+1, a detail spaceWm (the orthogonal
complement ofVm in Vm+1) is introduced. The basis functions of
Wm are the wavelets

p
2m (2mt�l). The wavelets have at least one

vanishing moment. Wavelets and scaling functions can be constructed
from finer scaling functions via the refinement relations

f�(t);  (t)gT =

1

l=�1

fh�l ; h l gT�(2t� l): (4)

Here, the filter coefficientsh�i , h i do not only uniquely define the
wavelet bases, but also the decomposition of a function into them
[7]. The projectionPMf can thus be decomposed as

PMf =

1

n=�1

cn�(2
m
t� n) +

M�1

m=m

1

n=�1

dmn (2
m
t�n)

(5)

with the starting resolutionm0. Coefficients fdmng denote the
amplitudes of the wavelets. Whereas the scaling functions cover the
low-frequency content, the wavelets include the information in their
respective frequency band.

Various families of wavelet bases have been developed and used
[7]–[9]. Among the simplest, the Haar-basis and the Chui–Wang
wavelets [9] were shown to suffice for the analysis of planar structures
[5]. Additionally, since both can be adapted to bounded intervals [4],
[5], they were used in this paper.

In the Haar system, scaling functions and wavelets are given by

�1(t) =
1; 0 < t < 1

0; otherwise

 1(t) =
1; 0 < t < 1

2

�1; 1

2
< t < 1

0; otherwise.
(7)

Their filter coefficients areh�0 = h
�
1 = 1 andh 0 = �h 1 = 1. It

can easily be verified that the Haar system forms an orthogonal basis.
Restriction to a bounded interval is achieved by simply omitting the
functions outside the region of interest. The Chui–Wang system of
piecewise linear functions is generated by the hat function defined
on the interval[0; � � � ; 2] as follows:

�2(t) =

t; 0 < t � 1

2� t; 1 < t � 2

0; otherwise.
(8)

The filter coefficients arefh�0 ; h�1 , h�2g = f1=2; 1; 1=2g and
fh 0 ; h 1 , h 2 , h 3 , h 4 g = f1=12,�1=2, 5=6, �1=2, 1=12g. In order
to obtain a complete basis with homogeneous boundary conditions
on a bounded interval, the functions extending over the limits need
to again be omitted.

In [4], boundary wavelets with a jump discontinuity at the edges
are employed. Here, however, we need wavelets to model the
homogeneous current at the ends of the strip. Moreover, the boundary
wavelets should have minimum support in the spaceWm. In the
system of piecewise linear functions, three fine scaling functions
suffice. Filter coefficients (4) are found by explicitly enforcing
orthogonality to�(2mt� l) 2 Vm and normalizing the new wavelet.
The coefficients for the left boundary wavelet arefh 0 , h 1 ,
h
 
2 g = f1, �2=3, 1=9g.
A 2-D basis is needed to simulate the current distribution on the

microstrip. In contrast to [3] where the transverse dependence of the
longitudinal current distribution was modeled by a cubic term, we use
a truly 2-D wavelet system. This can be derived from one-dimensional
wavelets in thex- andy-direction by means of the tensor product [7]

[�xm (x� l)]
l=1;N

f[ xm(x� l)]
l=1; N

gm=m ;M

�
[�
y

m
(y � l)]

l=1; N

f[ ym(y � l)]
l=1; N

gm=m ;M

T

: (9)

Here, mx; y
0 and Mx; y define the coarsest and finest resolution

levels, respectively.N (x; y);(�; )
m denote the number of functions

on resolution levelm. The superscripts are self-explanatory. The
resolution depth can be set independently in both directions for
optimum decomposition of each current distribution. The wavelet
system for the transverse distribution is the Haar system, whereas an
approximation with a continuous system is needed in the longitudinal
direction (Chui–Wang).

In this paper, we calculated the reaction integrals on the finest
scaling function level and then decomposed the impedance matrix
into different wavelet levels. This procedure is advantageous because
as it exploits the translation symmetries of the rooftop functions,
only Nx � Ny simple reaction integrals have to be computed. The
transformation into a wavelet-Galerkin matrix is performed following
the scheme

g
WL
xx =WgxxW

T (10)

whereW is set up from the filter coefficients in (4) and (9). The
matrix multiplication can be accelerated because of the sparsity of
W and by employing a pyramid algorithm [7].

IV. RESULTS

The reaction integrals are calculated following the procedure
outlined in [10]. The excitation of the fundamental mode is realized
as in [11]. Finally, the propagation constant and the fundamental
mode reflection coefficientR are deembedded by means of a modal
analysis with a matrix pencil method that was adapted from [12].

In a first example, the reflection coefficient of an open microstrip
line (TRL 1) with substrate thicknessh = 0:635 mm, strip width
b = 0:6 mm, and dielectric constant�r = 9:9 was calculated. The
length of the line isl = 10 mm. The results were found to be in good
agreement with those given in [3], as illustrated in Fig. 1. The slight
discrepancy between the methods at high frequencies is due to the
choice of the discretization of the current distribution. In particular,
in [3], a cubic term was chosen for the transverse dependence.

The effect of thresholding on the impedance matrix sparsity
(percentage of zero elements) is shown in Fig. 2 for four different
cases. Here, the threshold defines (relative to the magnitude of the
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Fig. 1. Reflection coefficient of the microstrip open TRL 1 versus frequency.
This paper: (—), after [3]: (- - -).

Fig. 2. Matrix sparsity versus threshold for different MRA levels denoted
by i, j, the wavelet levels in longitudinal and transverse direction.

largest matrix element) the value below which elements are set to
zero. The number of basis functions was 63 in the longitudinal
direction and four in the transverse direction. For a classical basis
(00), no elements vanish for a threshold below 10�5. The two digits
denote the number of wavelet levels in the longitudinal and transverse
direction, respectively. Observe the steep ascent of the sparsity around
this value. After a wavelet transformation has been performed, the
magnitude of the elements varies in a much wider range. More than
40% of the matrix elements are below a threshold of 10�7. It has been
observed here that thresholding is most effective when the wavelet
transformation is applied with two wavelet levels in both directions
(22). But even in just one direction, (20) or (02), matrix compression
can be done efficiently.

To illustrate the effects of compression on the reflection coefficient,
Fig. 3 shows the relative deviation of its magnitude fromjR0j, the
value without thresholding. The maximum allowable error was set
to 1%. Again, a wavelet transformation in both directions (22) is
superior to a compression in only one direction (02), (20), and the
sparsity reaches 80%. For a single wavelet level, the figure remains
slightly lower. Without wavelet transformation, an error of 1% is
reached at a sparsity of approximately 45%. The phase deviation
(not shown here) remains below 2� up to a sparsity of more than
85% in the case of (22).

The sparsities and thresholds for an error of 1% in the magnitude
of the reflection coefficient are listed in Table I. Here, not only

Fig. 3. Magnitude of the reflection coefficient versus sparsity for different
MRA levels.

TABLE I
SPARSITY AND THRESHOLD FORVARIOUS MRA LEVELS AND TWO

DIFFERENT LINES FOR 1% ERROR IN jRj. NOTATIONS ARE AS IN FIG. 2

different MRA depths are compared, but also another microstrip
line (TRL 2: h = 0:15mm, b = 1:5mm, �r = 12:8, l = 10mm,
f = 20GHz) with a width-to-height ratio of 10 has been included for
further comparison. Also, the number of functions has been varied:
instead of 63� 4, we employed 31� 8 functions. This corresponds
to a longitudinal discretization of about 13 functions per effective
wavelength—already a rather coarse approximation. Thus, there is not
much redundancy in the longitudinal direction, resulting in a poorer
compression of the matrix (see Table I, MRA 10, 20, 30). In the
transverse direction, the finer grid leads to more redundancy and thus
allows for a more efficient matrix compression (see Table I, MRA
01, 02, 03). Adding wavelet levels in longitudinal direction does not
significantly alter the obtained sparsity (see Table I, MRA 11, 22).

V. CONCLUSION

A wavelet scheme using simple wavelets has been extended to two
dimensions. This basis is employed in a spectral-domain moment
method to analyze a microstrip discontinuity. It has been shown
that wavelets are an effective tool for compressing the impedance
matrix, particularly when starting with a fine discretization because,
for instance, when an appropriate resolution is not knowna priori,
wavelets will adaptively find and reduce redundancy.
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The Generalized TLM-Based FDTD Modeling of
Frequency-Dependent and Anisotropic Media

Zhizhang Chen and Jian Xu

Abstract—A generalization of the previously proposed transmission-
line matrix (TLM)-based finite-difference time-domain (FDTD) method
is presented for modeling frequency-dependent and anisotropic media.
The generalized scheme incorporates electric- and magnetic-flux densities
in addition to variable mesh sizes. Since it is in an FD form, modeling
techniques developed for the conventional FDTD can be easily adapted
into the proposed TLM-based technique. In this paper, a modifiedzzz-
transform technique for frequency-dependent media is implemented, and
a two-dimensional (2-D) full-wave technique for guided-wave structures
is developed. In all the FDTD computations, no conversions between the
field quantities and TLM circuit parameters such as open- and short-
circuited stubs are required.

Index Terms—Anisotropic, FDTD, frequency dependent, TLM.

I. INTRODUCTION

Time-domain numerical methods have been shown to be powerful
for solving electromagnetic related problems. These time-domain
methods have received growing attention because of their versatility
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and simplicity. Two widely employed techniques so far are the finite-
difference time-domain (FDTD) method of the Yee’s grid [1] and the
transmission-line matrix (TLM) method initially proposed by Johns
[2]. The FDTD method is fairly easy to understand and implement, as
it is the direct approximation of the Maxwell’s equations. While the
TLM, which uses the analogy between voltage and current waves in a
transmission-line network and electromagnetic waves in space, is with
less numerical dispersion. However, the TLM requires a conversion
between the field quantities and circuit parameters to obtain the
appropriate scattering matrix. For most of the cases, the conversions
are not complicated, but sometimes they are not very straightforward
and not easily understood, e.g., derivations of various impedances
and open/short stub parameters related to variable grid sizes and
medium inhomogeneity. To circumvent the problem, an FDTD and
TLM combined technique—the TLM-based FDTD method equivalent
to the TLM symmetrical condensed node—was proposed by Chen,
Ney, and Hoefer [3], [4] while the work for the TLM expanded node
was reported earlier by Voelker and Lomax [5].

The TLM-based FDTD is essentially the formulation of the TLM
method in an FDTD fashion. It reveals the exact correspondence
between the TLM and FDTD methods and the alternative ways of
realizing the TLM concepts. Subsequent work on the more general
correspondence was shown in [6]. The accuracy and dispersion
comparisons between the TLM-based FDTD and the other FDTD
schemes were presented in [7]. The TLM-based FDTD is found to
have less numerical dispersion than the Yee’s FDTD, but requires a
little more memory space.

In this paper, the previously proposed TLM-based FDTD [3] is fur-
ther exploited and generalized to include frequency dependence and
anisotropics of a medium. Electromagnetic flux quantities aredirectly
incorporated into the FDTD scheme and, therefore, a wide range of
different media can be tackled. In this paper, frequency-dependent and
anisotropic media are specifically treated. The successful applications
of the technique shown in the following sections demonstrate the
flexibility of the proposed FDTD method with its ease in adapting
a different modeling scheme, e.g., thez-transform technique and
the two-dimensional (2-D) full-wave technique. In all the proposed
FDTD computations, no conversions between the field quantities and
the TLM circuit parameters and stub-related operations are required.
In addition, a normalizing procedure is also introduced to account
for variable mesh sizes.

II. THE GENERALIZATION OF THE TLM-BASED FDTD FORMULATION

In a general three-dimensional (3-D) case, Maxwell’s curl equa-
tions in a stationary and sourceless medium can be expressed in the
rectangular coordinates. For instance, forDx andBy

@Dx

@t
=

@Hx

@y
�

@Hy

@z
� �eyEx (1)

@By

@t
=

@Ez

@x
�

@Ex

@z
� �myHy (2)

where �e and �m are, respectively, the equivalent electric and
magnetic conductivities. Note that unlike the TLM-based FDTD
developed so far, the flux densities are used in the equations.

Following the conventional notation, a function of the discretized
space and time is denoted as

F (i �x; j �y; k �z; n �t) = F
n
(i; j; k): (3)
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